
Class-C Introduction v20131125 Milan Toth

Introduction to Class-C
!

by Milan Toth !!
Preface 3

QuickLook 4

QuickStart 5

Language Elements 6

Class declaration 6

Inheritance 6

Polymorphism 6

Member variables 6

Member functions 7

The self pointer 7

The allocator function 7

Deallocating objects 8

Constructor methods 8

Destructor methods 8

Member variable access 8

Member function calls 9

Local Member Function Calls 9

Normal member function calls 9

Class-Explicit calls 10

Instance-Explicit calls 10

Comparison of member function calls 11

Dynamic casting 11

Class Name and Class Id of an instance 11

For-each iteration in Core Library containers 11

The Core Library 13

CLObject 13

CLThread 13

CLDataList 14

CLObjectList 15

CLString 16

!1

Class-C Introduction v20131125 Milan Toth

CLStringDataList 18

CLStringObjectList 18

Using Class-C code in C/C++/Objective-C 20

How to develop in Class-C? 20

The compiler 20

Under the hood 21

Watch out for __attribute__(packed)!!! 21

Examine the compiled code 21

Programs written in Class-C 22

Future of Class-C 22

Best practices 22

!2

Class-C Introduction v20131125 Milan Toth

Preface !
Class-C 
 
What? Another Object-Oriented C language? Why do we need another?  
 
C is a really simple and minimalistic language, that's why we love it. But C++ and Objective-C
became language monsters with over a 100 keywords and confusing features, and more confusing
libraries. Just because you need classes and objects, you don't have to overcomplicate things.  
 
Minimalism  
 
The idea behind Class-C is very simple : take your existing C code, put global variables and
functions in a block and global variables become member variables, functions become methods.
Class is ready.  
 
Speed 
 
Explicit method calls are translated to direct c function calls. Dynamic casting is just a few cpu
cycles.  
 
Class Merging 
 
Instead of hierarchical inheritance, merge classes freely in a flat structure. If you have overridden
a method, but for some reason you need the original one, you can call the original method on your
object with an explicit call.  
 
Productivity 
 
The Class-C compiler generates header files automatically, you can concentrate on the
implementation. With CLObject as a base class, memory management becomes really simple, just
retain/release ownership to objects.  !
Philosophy !
Class-C encourages openness and simplicity. Clean, small, open and well documented code is the
safe and reliable code.
 
License  
 
Class-C and the Class-C compiler are in the public domain. 
 
Creator  
 
Class-C is developed by Milan Toth
milgra@milgra.com
http://milgra.com !!

!3

Class-C Introduction v20131125 Milan Toth

QuickLook !
1. Class definition !

!
2. Allocation/Instantiation/Deallocation !

!
3. Polymorphism !

!
5. Instance method call !

!
4. Static/Class method call !

objective-c c++ Class-C

BigPerson.h !
@interface BigPerson : Person
{
 NSString* name;
}
- (void) sayHello;
@end !!
BigPerson.m !
#import "BigPerson.h" !
@implementation BigPerson !
-(void) sayHello
{
 printf("Hello");
}
@end

BigPerson.h !
#include <string> !
class BigPerson : public Person
{
 public :
 void sayHello();
 private :
 std::string name;
} !
BigPerson.cpp !
#include "BigPerson.h" !
void BigPerson::sayHello()
{
 cout << "Hello";
}

BigPerson.clc !
BigPerson:Person
{
 CLString* name;
 void sayHello()
 {
 printf("Hello");
 }
}

objective-c c++ Class-C

NSString* name = [[NSString
alloc] initWithCString :
"milan"]; !
[name release];

std::string *name = new
std::string (“milan”); !

delete name;

CLString* name =
CLString:alloc(); !
or name:alloc(); !
name.initWithCString("milan");
name.release();

objective-c c++ Class-C

@protocol definitions !
@interface BigPerson:Person <
PTalk >

multiple inheritance !
class BigPerson : public

Person, public Italic

class merging !
BigPerson:Person:ITalk

objective-c c++ Class-C

[instance method : arg]; string.method(arg); string.method(arg);
string:method(arg);
CLString:method(string, arg);

objective-c c++ Class-C

[NSString method]; someClass::method(); CLString:method(NULL);

!4

Class-C Introduction v20131125 Milan Toth

QuickStart !
Class-C compiler is a source-to-source compiler in its actual state, it produces C source files.  
 
1. Compile the compiler  
 
Download www.milgra.com/classc/clcc.c , compile it with your favorite c compiler. With gcc or
clang it looks like this :  
 
gcc clcc.c -o clcc!!
clang clcc.c -o clcc !
The binary "clcc" appeared in the actual folder. Now you have a working Class-C compiler on
your system. You might want to put it under a default system path to make it accessible from
anywhere. !
2. Compile your first class !
Download www.milgra.com/classc/FirstClass.clc to the same folder, and compile it with clcc. On
Unix-like systmes : !
./clcc FirstClass.clc!!
Two files with the default names clcsrc.h and clcsrc.c appeared in the folder, these are the
compiled c sources of FirstClass.clc. !
3. Include the compiled c source in a c file, use FirstClass, and create a binary. !
Download www.milgra.com/classc/main.c to the same folder, and compile your sources with your
favorite c compiler. With gcc : !
gcc main.c clcsrc.c -o firstprog!!
main.c inlcudes clcsrc.h and instantiates FirstClass, calls one of its methods, cleans up and exits.
Note that main.c uses bridged Class-C calls, these expression looks different in Class-C, it's just
for the quickstart. !
4. Run your first program !
On Unix-like systems, type !
./firstprog!!
The output should be : !
Hello, this is FirstClass!!!  

!5

Class-C Introduction v20131125 Milan Toth

Language Elements !
Class declaration !
Files containing a Class-C class must have the extension ".clc". Only one class per file is allowed.
In a Class-C class file the top-level block contains the class declaration, the class name is before
the opening brace. !
[Example : FirstClass.clc
! FirstClass!
! {!!
! }!
---end example] !
Inheritance !
You can attach base classes to your class with the explicit accessor ":". Base class count is not
limited, but member variable names must be unique. !
[Example : FirstClass.clc
! FirstClass:OtherClass:CLObject!
! {!!
! }!
---end example] !
Polymorphism !
Because of multiple inheritance, Class-C doesn't have a special interface/protocol definition, just
use an other class containing the desired methods. !
[Example : FirstClass.clc
! FirstClass:OtherClass:CLObject:IClickable!
! {!!
! }!
---end example] !
Member variables !
Variables declared in the top-level block of a class file are member variables. !
[Example : FirstClass.clc
! FirstClass!
! {!
! ! int counter;!
! }!
---end example] !

!6

Class-C Introduction v20131125 Milan Toth

Member functions !
Functions defined in the top-level block of a class file are member functions. !
[Example : FirstClass.clc
! FirstClass!
! {!
! ! int setCounter(int theCount)!
! ! {!
! ! ! counter = theCount;!
! ! }!
! }!
---end example] !
The self pointer !
In a class definition, you can use the built-in "self" pointer to point to the current object. !
[Example :
! void callOtherObject()!
! {!
! ! otherObject.doSomethingWithMe(self);!
! }!
---end example] !
The allocator function !
To allocate an object, you have to use an explicit call to the "alloc" member function of the wanted
class.
If you use CLObject as a base class, then you must initalize the object immediately, to set retain
count to 1. !
Class-explicit allocation : !
[Example :
! CLString* string = CLString:alloc();!
! string.init();!
---end example] !
Instance-explicit allocation : !
[Example :
! CLString* string;!!
! string:alloc();!
! string.init();!
---end example] !

!7

Class-C Introduction v20131125 Milan Toth

Deallocating objects !
To deallocate a standalone Class-C object, you use the free_object() function, but before that
you might want to call the destructor of your object manually. (Unmanaged objects)
If you use CLObject as a base class, you have to use the release() member function instead,
which, if retain count of the object is 0, calls the destructor and frees memory in one step.
(Managed objects) !
[Example :
! simpleObject.destruct();! // calls destructor on non-CLObject!
! free_object(simpleObject); // frees memory for non-CLObject!!
! string.release();! ! // calls destructor and frees memory!
---end example] !
Constructor methods !
In Class-C constructor/initializer methods are just user-defined custom methods. Just be sure to
initialize all member variables (and possibly base classes) in them to avoid unwanted behaviour.
The return type can be anything. !
[Example :
! void initInACustomWay()!
! {!
! ! CLObject:init(self);!
! ! myCArray = malloc(sizeof(int) * 10);!
! }!
---end example] !
Destructor methods !
In Class-C destructor methods are just user-defined custom methods. If you use CLObject as a
base class, then you have to use the "destruct" member function as the destructor function. You
have to override that function and place your destructor code there. "release" member function
will call "destruct" member function when retain count is 0. !
[Example :
! void destruct()!
! {!
! ! free(myCArray);!
! ! CLObject:destruct(self);!
! }!
---end example] !
Member variable access !
Access member variables with the dot "." accessor. !
[Example :
 myObject.text;
---end example]

!8

Class-C Introduction v20131125 Milan Toth

!
Within the scope of a class, you don't have to use the "self" accessor to refer to a local member
variable. !
[Example :
 int myVariable;
 void myFunc()!
! {!
! ! myVariable = 5;!
! }
---end example] !
Member function calls !
There are four ways to call a member function in Class-C, and it is very important to understand
the difference between them to write efficient code. !
Local Member Function Calls !
Within the scope of a class, you can call local member functions just like you call a global c
function, without the "self" accessor. !
[Example :
 void myFunc1()!
! {!!
! }
 void myFunc2()!
! {!
! ! myFunc1();!
! }
---end example] !
They are translated to direct c function calls, and no casting is happening during the call - they are
high speed calls. !
Normal member function calls !
They are the general member function calls, you have to use the dot accessor "." before the method
name. They are cast-safe, a call to casted instance's member function is identical to the call to the
original instance's member function. !
[Example :
 string.appendCString("something");
---end example] !
At least three structure is accessed during a normal member function call - they are medium speed
calls. !!

!9

Class-C Introduction v20131125 Milan Toth

Class-Explicit calls !
In a class-explicit call you define the class of the method explicitly. You have to use the explicit
accessor ":" before the method name. The first parameter of the call have to be an object or NULL,
and the function uses that object as the member variable container. The only exception is the
allocator call, it needs no first parameter. !
[Example :
 CLString:appendCString(string , "something");
---end example] !
Use class-explicit calls when you want to call member functions of a class directly from anywhere,
or when you want to access the original version of an overridden member function. The most
common usage is the base class initializer from class initializer. !
[Example : FirstClass.clc
 void init()!
! {!
! ! CLObject:init(self);!
! }
---end example] !
They are translated to direct c function calls, but the first parameter is always casted to the
declared class. They are medium speed calls. !
Instance-Explicit calls !
In an instance-explicit call the class of the instance defines the class of the method explicitly. You
have to use the explicit accessor ":" before the method name. !
[Example :
 string:appendCString("something");
---end example] !
If string's type is CLString, then the above call is identical to : !
[Example :
 CLString:appendCString(string , "something");
---end example] !
but no type casting is applied to the first parameter. !
They are translated to direct c function calls, and no casting is happening during the call - they are
high speed calls. !

!10

Class-C Introduction v20131125 Milan Toth

Comparison of member function calls !
As you can see, local member function calls and instance-explicit calls are the fastest calls, they
have the speed of pure c function calls, the other two are a little bit slower, but they are still very
fast. You can write your full program without instance-explicit calls, but if you want to make high-
performance code you might want to consider using instance-explicit calls where ever possible. !
But be careful, instance-explicit calls are not cast-safe, and they can cause a lot of headache if not
used properly! Consider the following setup : !
[Example :
 CLCustomString* custom = CLCustomString:alloc();!
! custom.init();
! CLString* string = (CLString*) custom;! // casts to CLString!!
! // calls CLCustomString:appendCString method!
! string.appendCString("something");! ! !!
! // calls CLString:appendCString method!
! string:appendCString("something");!
---end example] !!
Dynamic casting !
Class type casting has the same syntax as normal type casting. !
[Example :
! CLString* string = (CLString*) custom;! // cast to CLString!
---end example] !!
Class Name and Class Id of an instance !
It can be useful to know the original class and class id of an instance. To get it : !
[Example :
! struct Instance* original = object._components[0];!
! char* className != original->_class->className;!
! void* classId ! = original->_class->classId;!
---end example] !
className is a c string, classId is a word-length number, the memory address of the class
descriptor structure. !!
For-each iteration in Core Library containers !
The two Core Library containers, CLDataList and CLObjectList can be iterated through with a java-
like iteration syntax, but only with their true types !

!11

Class-C Introduction v20131125 Milan Toth

[Example :
! for (CLObject* object : objectList) !
! { !
! ! !
! ! CLString* string = (CLString*) object;!!
! }!
! !
! for (void* data : dataList) !
! {!!
! ! long number = (long) data;!!
! }!
---end example] !

!12

Class-C Introduction v20131125 Milan Toth

The Core Library
!
The Core Library contains CLObject which should be the base class of all Class-C classes, and a few
classes that became the bare minimum for me to a faster development. Feel free to expand and
modify them for your own needs, and if you think you put in something really necessary, feel free
to send me a pull request on github. !
CLObject !
Class containing methods and variables for reference counted memory management and for
standard literal description. !

!
CLThread !
Encapsulates a POSIX thread and mutex  !

CLObject

unsigned long retainCount;

 the retain count of the object

void init();

 initializer, set retain count to 1

void destruct();

 destructor, empty function, should be overridden

void retain();

 increases retain count with 1

void release();

 decreases retain count with 1, destructs and deallocates object if needed

void describe();

 prints a description of the object to the standard output

CLThread:CLObject

char alive;

 A flag indicating the thread state.

pthread_t thread;

 The POSIX thread

pthread_mutex_t mutex;

 The POSIX mutex.

!13

Class-C Introduction v20131125 Milan Toth

!
CLDataList !
CLDataList is a linked list containing general data. CLDataList knows nothing about the data, so
memory management of the data has to be done manually outside of the data list. !

void init();

 initializer, sets retain count to 1, initializes mutex

void destruct();

 destructor

void start();

 starts execution

void run();

 empty function, should be overridden with the executable code

CLDataList:CLObject

struct CLLink* head;

 starting link element

struct CLLink* last;

 ending link element

unsigned long length;

 length of list

void init();

 initializer, sets retain count to one, length to 0, head and last to NULL

void destruct();

 destructor

void addData(void* theData);

 adds data

void addDataAtIndex(void* theData , unsigned long theIndex);

 adds data at given index

void addDatasInDataList(CLDataList* theDataList);

 adds all data from a data list

void removeData(void* theData);

 removes data

void* removeDataAtIndex(unsigned long theIndex);

!14

Class-C Introduction v20131125 Milan Toth

!
CLObjectList !
CLObjectList is a linked list containing objects with CLObject base classes. CLObjectList retains/
releases objects on addition/removal, makes memory management easier, but because it accepts
casted objects only, and retain/releases continuously, it is slower than CLDataList. !

 removes data at given index

void removeAllDatas();

 resets list

void* dataAtIndex(unsigned long theIndex);

 returns data at given index

char containsData(void* theData);

 returns 1 if data exists in list, 0 if not

unsigned long indexOfData(void* theData);

 returns index of given data

void* firstData()

 returns data at index 0

void* lastData()

 returns data at last index

CLObjectList:CLObject

struct CLLink* head;

 starting link element

struct CLLink* last;

 ending link element

unsigned long length;

 length of list

void init();

 initializer, sets retain count to one, length to 0, head and last to NULL

void destruct();

 destructor

void addObject(CLObject* theObject);

 adds object to the list

void addObjectAtIndex(CLObject* theObject , unsigned long theIndex);

 adds object to the list at given index

!15

Class-C Introduction v20131125 Milan Toth

!
CLString !
CLString is a linked list containing characters. It has direct file read/save functionality, basic path
management, and basic string functions. !

void addObjectsInObjectList(CLObjectList* theObjectList);

 adds all objects from object list to the list

void removeObject(CLObject* theObject);

 removes object from the list

void removeObjectAtIndex(long long theIndex);

 removes object at given index

void removeAllObjects();

 resets list

CLObject* objectAtIndex(unsigned long theIndex);

 returns object at given index

char containsObject(CLObject* theObject);

 returns 1 if object exists in list, 0 if not

unsigned long indexOfObject(CLObject* theObject);

 returns index of given object

CLObject* firstObject();

 returns object at index 0

CLObject* lastObject();

 returns object at last object

CLString:CLObject

struct CLChar* head;

 starting character

struct CLChar* last;

 last character

unsigned long length;

 length of string

void init();

 initializer, sets retain count to one, length to 0, head and last to NULL

void initWithString(CLString* theString);

!16

Class-C Introduction v20131125 Milan Toth

 initializer, same as init but fills up string with theString

void initWithCString(char* theString);

 initializer, same as init but fills up string with theString

void destruct();

 destructor

void appendCharacter(char theCharacter);

 appends one character to the end of the string

void appendString(CLString* theString);

 appends string to the end of the string

void appendCString(char* theString);

 appends c string to the end of the string

void removeAllCharacters();

 resets string

void readFile(CLString* thePath);

 reads up given file into the string

void readFilePointer(FILE* thePointer);

 reads up file contents into the string

void writeToFile(CLString* thePath);

 writes string into given file

void writeToFilePointer(FILE* thePointer);

 writes string into given file

CLString* stringWithLastPathComponent();

 returns last path component of string in a new CLString

CLString* stringByRemovingExtension();

 returns string without the extension in a new CLString

CLString* stringByRemovingLastPathComponent();

 returns string without the last path component in a new CLString

char containsString(CLString* theString);

 returns 1 if given string exists in string, 0 if not

unsigned long indexOfString(CLString* theString);

 returns index of given string

char equals(CLString* theString);

!17

Class-C Introduction v20131125 Milan Toth

!
CLStringDataList !
This class is an utility class for operations involving CLString and CLDataList instances.
Instantiation is not necessary, class method's don't need member variables. !

!
CLStringObjectList !
This class is an utility class for operations involving CLString and CLObjectList instances.
Instantiation is not necessary, class method's don't need member variables. !

 compares given string with the string. result is 1 is two string is identical, 0 if not

char* cString();

 returns the c string representation of string. the result has to be deallocated.

CLStringDataList:CLObject

char containsString (CLString* theString , CLDataList* theDataList)

 returns 1 if list contains string, 0 if not

unsigned long indexOfString (CLString* theString , CLDataList*
theDataList)

 returns index of given string in the given data list

CLDataList* splitStringByCharacter(CLString* theString , char
theCharacter);

 Splits the given string at given characters, to a CLDataList

CLStringObjectList:CLObject

char containsString(CLString* theString , CLObjectList*
theObjectList);

 returns 1 if given string exists in object list, 0 if not

unsigned long indexOfString(CLString* theString , CLObjectList*
theObjectList);

 returns index of given string in the given data list. result is -1 if string is not found

void removeString(CLString* theString , CLObjectList* theObjectList);

 removes string from the object list

void removeStrings(CLObjectList* theStringList , CLObjectList*
theObjectList);

 removes all strings in given object list from the second object list

void addStringAsUnique(CLString* theString , CLObjectList*
theObjectList);

 adds given string as an unique string to the object list

!18

Class-C Introduction v20131125 Milan Toth

!

void addStringsAsUnique(CLObjectList* theStringList , CLObjectList*
theObjectList);

 adds all strings from the object list as unique strings to the object list

CLObjectList * splitStringByCharacter(CLString* theString , char
theCharacter);

 Splits the given string at given characters, to an object list

!19

Class-C Introduction v20131125 Milan Toth

Using Class-C code in C/C++/Objective-C !
Just include the compiled Class-C source header - clcsrc.h by default, and use the bridge functions
to do whatever you want with the help of the mapping table below : !

!
Do as little as possible in this pseudo-Class-C-code, you better put your whole control logic in
Class-C classes, and do only the allocation-instantiation-deallocation of the main control logic in
C/C++/Objective-C. !
How to develop in Class-C? !
You can develop Class-C on every platform with a C compiler. !
1. Put the compiler under one of your PATH locations !
On UNIX-like systems just copy it under /usr/bin or /usr/local/bin !
2. Use your favorite c code editor/IDE !
You can go on in an old school way, with a plain text editor and command line compiling, or you
can use your favorite IDE with C syntax highlighting. If your IDE supports build phases and script
running, add Class-C file compiling as the first phase. If build phases aren't supported, you have to
create a compile script first, or do the compiling manually before building.
 
3. Always check compiler output  
 
The compiler output is your best friend, always check it before compiling the final project. You will
see which classes are not found, you will get possibly unincluded but needed classes, and so on.  
 
4. Debug your code  
 
Your IDE/Terminal will show the problem in the compiled C source, and you have to find it in the
Class-C source. The method name in the compiled source tells you which Class-C class and what
method contains the problematic line. !!
The compiler !
You add the files you want to compile without switches. Included files will be recursively added to
the compile chain, so it is enough to add the files containing the top-level classes only.

Class-C code C code

CLString* string; struct CLString* string;

CLString:alloc(); CLString_alloc();

CLString:init(string); CLString_init(string);

CLString:release(string); CLString_release(string);

string.release() CLString_release(string);

!20

Class-C Introduction v20131125 Milan Toth

!
Other switches : !
-p : define a class lookup path
-o : define the output file prefix, two files will be created with this prefix, one ".c" and one ".h" !
Example : !
1. Compiling the dynamics engine with all core lib paths, dynamics.c and dynamics.h as output !
clcc Compiler.clc -o /Users/milgra/CodeBase/Dynamics/dynamics -p /Users/
milgra/CodeBase/Dynamics/ -p /Users/milgra/CodeBase/Library/CoreLib/ -p /
Users/milgra/CodeBase/Library/MathLib/ -p /Users/milgra/CodeBase/Library/
PhysicsLib/ -p /Users/milgra/CodeBase/Library/TextLib/ -p /Users/milgra/
CodeBase/Library/GraphicsLib/ -p /Users/milgra/CodeBase/Library/
GraphicsLib/Primitives/!!
Under the hood !
A Class-C object is a plain C struct. If a class consists of two or more base classes, they are
attached together in a bigger standalone struct, and there is a _class and a _components member
varaible at class borders. _class points to the class descriptor of the object, _components contains
the addresses of the class borders in the struct. Type casting is just setting the object pointer to
the address of an inner class position. !
[Example :

struct PLVector!
{!
!! struct PLVector_Class* _class;!
!! void** _components;!
!! float x ; !
!! float y ; !
!! float angle ; !
!! float length ; !
!! struct CLObject_Class* _class_CLObject;!
!! void** _components_CLObject;!
!! unsigned long retainCount ; !
};!

---end example]!!!
Watch out for __attribute__(packed)!!! !
Since Class-C relies heavily on structure alignment (the structure of a base class in a bigger
structure must be identical to the standalone structure of the same class), it is very dangerous to
switch off or alter the default alignment of the structures. If you really need this kind of behaviour,
create a standalone class without any base classes to avoid misaligned structs. !
Examine the compiled code !
If you want to dig in deeper, just examine the translated C source. Start with a simple class, then
add CLObject as the base class, and so on, you will easily understand what's going on.

!21

Class-C Introduction v20131125 Milan Toth

Programs written in Class-C !
Class-C Compiler !
The Class-C compiler was written in a functional manner : no member variables used with the
exception of the Main class and the constants container class, everything runs in its own scope. !
DynamicsX !
Simple dynamics engine with an openGL visualizer. !
Cerebral Cortex for iOS, OSX !
My nerve-wrecking ambient/reflex game, it was selected for the Best New Games section in the
Mac App Store. !!
Future of Class-C !
I find the source-to-source compiler quite handy, because I cannot compete with the dozens of
special c compilers for embedded systems, with clang and others, and in addition, with the logic in
c it is very easy to write multi-platform code. !
Best practices !
One-statement rule !
For the sake of clarity, use only one statement per line. Don't overload lines with stuff, no function
calls as parameters, and so on. !
Standaloneness !
Classes, especially core classes must be standalone, they have to work without other classes (with
the exception of CLObject of course). !
Utility classes !
If you need multiple high-level classes for a behaviour, create a utility class (CLStringObjectList
for example), and do things in class level explicit methods. !
Setter importance !
For object members, always write a setter method which deals with null values and releases/
retains old and new values properly, it is a MUST for trouble-free memory management and
development. !
Storage Classes instead of Maps/Dictionaries !

!22

Class-C Introduction v20131125 Milan Toth

Maps and dictionaries are not really good things - they are too generic. If you want to store a large
amount of key-value pairs, use a database, in case of a moderate amount of pairs, create a storage
class. If you really really need a map, then you have to write your own container class. !
Memory management !
If you don't like memory management, you don't like programming !
Hatred and Love!!! !
Hate hidden things. Hate when you can't see - down to assembly level - what a function does, hate
closed frameworks and pre-compiled libs and generic frameworks. Hate plugins. Hate
dependencies. Hate unnecessary things. !
Love simple, clean, open standalone projects. Love clarity, love simplicity.  !
Philosophy  
 
Class-C encourages openness. Don't hide your code in compiled libraries, don't hide your
comments, let the coders understand what's going on down to assembly level. That's the only way
to write safe, reliable code. And that's the best way to teach others and to learn.  
 
Hopefully, Class-C syntax also helps coders to write simple, clean, balanced, symmetric, beautiful
classes which are a pleasure to look at and read.  
 
Try to avoid big and general purpose frameworks and libraries in the hope of quick deployment,
try to create your own small, minimalistic frameworks instead. Understand how the processor
works, always count the possible cpu cycles, whatever you write.

!23

